Effect of stance width on multidirectional postural responses.
نویسندگان
چکیده
The effect of stance width on postural responses to 12 different directions of surface translations was examined. Postural responses were characterized by recording 11 lower limb and trunk muscles, body kinematics, and forces exerted under each foot of 7 healthy subjects while they were subjected to horizontal surface translations in 12 different, randomly presented directions. A quasi-static approach of force analysis was done, examining force integrals in three different epochs (background, passive, and active periods). The latency and amplitude of muscle responses were quantified for each direction, and muscle tuning curves were used to determine the spatial activation patterns for each muscle. The results demonstrate that the horizontal force constraint exerted at the ground was lessened in the wide, compared with narrow, stance for humans, a similar finding to that reported by Macpherson for cats. Despite more trunk displacement in narrow stance, there were no significant changes in body center of mass (CoM) displacement due to large changes in center of pressure (CoP), especially in response to lateral translations. Electromyographic (EMG) magnitude decreased for all directions in wide stance, particularly for the more proximal muscles, whereas latencies remained the same from narrow to wide stance. Equilibrium control in narrow stance was more of an active postural strategy that included regulating the loading/unloading of the limbs and the direction of horizontal force vectors. In wide stance, equilibrium control relied more on an increase in passive stiffness resulting from changes in limb geometry. The selective latency modulation of the proximal muscles with translation direction suggests that the trunk was being actively controlled in all directions. The similar EMG latencies for both narrow and wide stance, with modulation of only the muscle activation magnitude as stance width changed, suggest that the same postural synergy was only slightly modified for a change in stance width. Nevertheless, the magnitude of the trunk displacement, as well as of CoP displacement, was modified based on the degree of passive stiffness in the musculoskeletal system, which increased with stance width. The change from a more passive to an active horizontal force constraint, to larger EMG magnitudes especially in the trunk muscles and larger trunk and CoP excursions in narrow stance are consistent with a more effortful response for equilibrium control in narrow stance to perturbations in all directions.
منابع مشابه
Muscle synergy organization is robust across a variety of postural perturbations.
We recently showed that four muscle synergies can reproduce multiple muscle activation patterns in cats during postural responses to support surface translations. We now test the robustness of functional muscle synergies, which specify muscle groupings and the active force vectors produced during postural responses under several biomechanically distinct conditions. We aimed to determine whether...
متن کاملPostural muscle responses to multidirectional translations in patients with Parkinson's disease.
The postural adaptation impairments of patients with Parkinson's disease (PD) suggest that the basal ganglia may be important for quickly modifying muscle activation patterns when the direction of perturbation or stance conditions suddenly change. It is unknown whether their particular instability to backward postural perturbations is due to specific abnormalities of parkinsonian postural muscl...
متن کاملPostural Muscle Responses to Multidirectional Translations in Patients with Parkinson’s Disease By
2 Summary The postural adaptation impairments of patients with Parkinson's disease (PD) suggest that the basal ganglia may be important for quickly modifying muscle activation patterns when the direction of perturbation or stance conditions suddenly change. It is unknown whether their particular instability to backward postural perturbations is due to specific abnormalities of parkinsonian post...
متن کاملStability in a frontal plane model of balance requires coupled changes to postural configuration and neural feedback control.
Postural stability depends on interactions between the musculoskeletal system and neural control mechanisms. We present a frontal plane model stabilized by delayed feedback to analyze the effects of altered stance width on postural responses to perturbations. We hypothesized that changing stance width alters the mechanical dynamics of the body and limits the range of delayed feedback gains that...
متن کاملTransfer of postural adaptation depends on context of prior exposure.
Postural control is significantly affected by the postural base of support; however, the effects on postural adaptation are not well understood. Here we investigated how adaptation and transfer of anticipatory postural control are affected by stance width. Subjects made reaching movements in a novel dynamic environment while holding the handle of a force-generating robotic arm. Each subject ini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 85 2 شماره
صفحات -
تاریخ انتشار 2001